On the Use of Information Systems Research Methods in Data Mining

نویسندگان

  • Mykola Pechenizkiy
  • Seppo Puuronen
  • Alexey Tsymbal
چکیده

Information systems are powerful instruments for organizational problem solving through formal information processing (Lyytinen, 1987). Data mining (DM) and knowledge discovery are intelligent tools that help to accumulate and process data and make use of it (Fayyad, 1996). Data mining bridges many technical areas, including databases, statistics, machine learning, and human-computer interaction. The set of data mining processes used to extract and verify patterns in data is the core of the knowledge discovery process. Numerous data mining techniques have recently been developed to extract knowledge from large databases. The area of data mining is historically more related to AI (Artificial Intelligence), pattern recognition, statistical, and database communities, though we think there is no objective reason for that. And nowadays, although the field of data mining according to the ACM classification system* for the computing field is a subject of database applications (H.2.8) that in sequence related to database management (H.2) and to information systems field (H.), there exists a gap between the data mining and information systems communities. Each of the two scientific communities publishes its own journals and books, and organizes different conferences that rarely cover the same issues. This situation is not beneficial since both communities share in common many similar problems being solved and therefore are potentially helpful for each other. In this paper (in Section 2) we consider some existing frameworks for data mining, including database perspective and inductive databases approach, the reductionist statistical and probabilistic approaches, data compression approach, and constructive induction approach. We consider their advantages and limitations analyzing what these approaches account in the data mining research and what they do not. The study of research methods in information systems by Järvinen (1999) encouraged us to analyse connections and appropriateness of them to the area of data mining. In Section 3 we are trying to view the data mining research as a continuous

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Rough Set Theory in Data Mining for Decision Support Systems (DSSs)

Decision support systems (DSSs) are prevalent information systems for decision making in many competitive business environments. In a DSS, decision making process is intimately related to some factors which determine the quality of information systems and their related products. Traditional approaches to data analysis usually cannot be implemented in sophisticated Companies, where managers ne...

متن کامل

Applying a decision support system for accident analysis by using data mining approach: A case study on one of the Iranian manufactures

Uncertain and stochastic states have been always taken into consideration in the fields of risk management and accident, like other fields of industrial engineering, and have made decision making difficult and complicated for managers in corrective action selection and control measure approach. In this research, huge data sets of the accidents of a manufacturing and industrial unit have been st...

متن کامل

An Optimal Model for Medicine Preparation Using Data Mining

Introduction: Lack of financial resources and liquidity are the main problems of hospitals. Pharmacies are one of the sectors that affect the turnover of hospitals and due to lack of forecast for the use and supply of medicines, at the end of the year, encounter over-inventory, large volumes of expired medicines, and sometimes shortage of medicines. Therefore, medicine prediction using availabl...

متن کامل

Predicting Type2 Diabetes Using Data Mining Algorithms

Background and purpose: Today, information systems and databases are widely used and in order to achieve higher accuracy and speed in making diagnosis, preventing the diseases, and choosing treatments they should be merged with traditional methods. This study aimed at presenting an accurate system for diagnosis of diabetes using data mining and a heuristic method combining neural network and pa...

متن کامل

Analysis of Pre-processing and Post-processing Methods and Using Data Mining to Diagnose Heart Diseases

Today, a great deal of data is generated in the medical field. Acquiring useful knowledge from this raw data requires data processing and detection of meaningful patterns and this objective can be achieved through data mining. Using data mining to diagnose and prognose heart diseases has become one of the areas of interest for researchers in recent years. In this study, the literature on the ap...

متن کامل

Measuring the Similarity of Trajectories Using Fuzzy Theory

In recent years, with the advancement of positioning systems, access to a large amount of movement data is provided. Among the methods of discovering knowledge from this type of data is to measure the similarity of trajectories resulting from the movement of objects. Similarity measurement has also been used in other data mining methods such as classification and clustering and is currently, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005